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1. Introduction 

To evaluate an algorithm and measure its efficiency, complexity, and applicabil- 
ity, often one needs to have a variety of test problems with known global 
solutions. This is particularly important for the class of Nonconvex Optimization 
algorithms and, especially, Concave Minimization and Reverse Convex Program- 
ming algorithms, where the problem usually has many local solutions. While there 
seems to be a wide interest among researchers in developing algorithms for the 
latter class of problems, there is still much work to be done in the area of 
generating test problems for the true evaluation of these proposed algorithms. To 
this date, only a few authors have published in the area of test problems 
construction for global optimization algorithms [5]. The purpose of this paper is to 
adopt the basic idea of the general method presented in [4] (also see [3, 6, 7, 1]) to 
construct test problems that involve arbitrary, not necessarily quadratic, concave 
functions, for both Concave Minimization and Reverse Convex programs. The 
methods presented in [6, 1] require the solution of n linear programs while in [7] a 
convex programming problem has to be solved. The major computational 
requirement in [4, 3] and essentially in this paper, involve the solution of a linear 
system with a unique solution. In addition, these methods require some computa- 
tional effort to obtain a nondegenerate vertex of the associated convex poly- 
hedron. 

2. Case I -  Reverse Convex Problem 

The global optimization problem, Minimize{cVx Ix E P, g(x)~<0} is known as 
Linear Reverse Convex Program, LRCP, and the constraint g(x)<~ 0 is called 
reverse convex constraint if g is concave on R n. In this formulation P is a 
nonempty convex polyhedron in R n and c is an n-vector. Further detail on LRCP 
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can be found in [1] and references herein. We now proceed with our procedure of 
generating test problem for LRCP. Let  P be a bounded convex polyhedron in R". 
In addition, assume a nondegenerate vertex x ~ of P is available. (There are 
several computational procedures for finding such a vertex.) Select a point x* on 
the edge [x ~ x i] of P, where x i is a selected neighboring vertex of x ~ By the 
nondegeneracy assumption on x ~ there are exactly n such neighbors to x ~ which 
are denoted by x j, j = 1 , . . . ,  n. Thus, x* = Ax ~ + (1 - A)x i for 0 < ~ < 1. Without 
loss of generality, assume i = 1. Additionally, let a = (a 1, a 2 , . . . ,  a ,)T be a 
prespecified constant vector such that a I = A < 1 and % > 1 for j = 2, 3 , . . . ,  n. 
Then,  for j = 1 , . . . ,  n, set yJ = x ~ + %(x j - x~ Clearly, by construction, x* = yl.  
Fur thermore ,  assume that h(x) is a concave function on R n or on an arbitrary 
subset of R" containing P. For instance, h(x) may be chosen to include 
exponential,  logarithmic, trigonometric, or any other type of concave terms. 

Next,  define 

g(x) = h(x) + crx  + gO (1) 

where the augmented linear term, cTx, which is indeed a control parameter  to 
this proposed model,  and the constant term, gO, are to be determined by 
imposing the condition that g(x) must vanish at all the points x ~ and y J, 

j = 1 . . . .  , n. That  is, 

g(x ~ = o 

g ( f ) = 0 ,  y = l , . . . , n .  

Clearly, the addition of a linear, concave term to h(x) does not disturb the 
concavity of the resultant function. Next, g(x ~ is subtracted from the last n 
equations to yield the following set of linear equations: 

g ( / ) - g ( x  ~  j =  l . . . . .  n .  

Then,  by expanding the terms using equation (1) we get: 

~ =h(x ~ - h ( / ) ,  j=  1 , . . .  ,n .  

But,  for j = l , . . . , n ,  y J = x ~  ~ and hence ( x J - x ~ 1 7 6  
Recall that with choice of numbers % with 

0 < a 1 < 1  and % > 1 ,  j = 2 , . . , , n .  

we get: 

cZ (x j - x ~ = (h(x ~ - h(yJ))/aj  =- ~j . 

Thus, we have a linear system, n equations in n unknowns, of the form 
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Bc = / 3 ,  (2) 

where B is an n x n matrix with its i-th row given by (x i - x ~  T and 13 an n-vector  

with the components  13j, as defined earlier. By the nondegeneracy and bounded- 
ness assumptions on x ~ and P, respectively, the system (2) has a unique solution 

for c. Once c is known the value of the constant term, gO, can easily be found as 
follows: 

g(x o) = h(x o) + cVx o + gO = 0 ?, gO = _h(x  o) _ cTx o " 

Therefore ,  g ( x ) = h ( x ) +  cVx + g ~  is the desired nontrivial reverse convex 

constraint.  Next,  we a t tempt  to construct an objective hyperplane,  H =  {u E 
R" I uVx = K} for some constant K, in such a way that the prespecified point x* 
on the edge connecting x ~ to x I becomes a unique global solution for the reverse 
convex program,  Minirnize{uVxlx E P, g(x) <~ 0}. To determine H,  let us define 

vectors z j, j = 1 , . . . ,  n as follows: 

z '  = (x '  - x ~  

z j = ( y j - x ~  j = 2 , . . . , n .  

Fur thermore ,  let D be an n x n matrix with vector  z j as its j- th volume and e be a 
vector  of all ones. 

D = [z 1, Z 2 ,  . . . , Z n ]  and e T = (1, 1 . . . .  , 1 ) .  

Then the hyperplane H below will have the desired property.  

H = { x l u T ( x - - x  ~  u v = e v D - 1  and (3) 

x* = Argmin (uZx Ix E P, g(x) <~ 0}.  (4) 

Clearly, the choice of h(x)= 1 y gx Qx, with appropriate  matrix Q, can be 
considered as a special case of the above. Also note that h(x) can be chosen quite 
arbitrarily as long as it is concave on R". Through the choice of the augmented 
linear term, we correct the resulting function g(x) to satisfy our requirements.  

Therefore ,  a wide variety of nontrivial and complex forms of g(x) may be 
generated.  

If  P is an unbounded convex 
eVx <~M, for a large value of 

Alternatively,  the boundedness  
minor  modification. Let  P be an 

polyhedron,  then the insertion of the constraint 
M, into the constraint set makes  P bounded.  
restriction imposed on P can be relaxed with a 
unbounded convex polyhedron in R n and x ~ be a 

nondegenera te  vertex of P with less than n neighboring vertices. Without  loss of 
generality, assume that ~7 j, for j = 2 , . . . ,  k + 1, (k ~<n) are the directions of the 

ex t reme rays leading to x ~ and that x ~ has exactly ( n -  k) neighboring vertices. 
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Then the points yJ are determined as follows: 

yl = x  0 + a l ( x  1 _ x o) 

yJ = x  ~ + % "~J 

y J  = x ~ + % ( x  j - x ~  

0 < a i < 1 ,  i . e . ~ r ] = l .  

~ > 0 ,  j = 2 , . . . , k + l .  

~ > 1 ,  j = k + 2  . . . .  , n .  

In addition, for j = 2 , . . . ,  k + 1, we let x j = x ~ + 2%. ~J on the unbounded edges. 
Note that the generated test problem has the property that x*, its global solution, 
lies on an edge leading to x ~ Thus, its detection becomes an easy task for 
edge-searching algorithms which initiate their searching process from x ~ This, of 
cOurse, may not be the case for other methods of solving reverse convex 
programs. Nevertheless, one can modify the test generation method presented 
here to create more interesting problems. The method described below resets x ~ 
to a vertex arbitrarily far (in the sense of the minimum number of pivots needed 
to reach x* when starting from x ~ from x*. Thus, the detection of x* is a 
nontrivial task for edge-search algorithms. The basic idea behind the method is 
that one should slice the polytope P in such a way that x* remains intact and x ~ is 
chopped out by each slicing plane. 

2.1. SLICING PROCEDURE 

Let  P, x ~ and yi,  j = 1 , . . . ,  n be given as before. If P is unbounded then the 
points yJ's and xJ's on the unbounded edges have to be determined according to 
the procedure described above. Next, assume that /2/ is  a translation of the plane 
H,  given by equation (3), to the point x*. L e t p  i, i = 1 , . . . ,  n, denote the points 
where the extreme rays emanating from x ~ intersect /~/. 

pl  = yl (5) 

p i  = x o + O ( y i  _ x O ) ,  i = 2 ,  . . . , n .  (6) 

0 = Ily 1-x~ xl-x~ = ~, .  (7) 

Similarly, let us define the points ql, i = 1 , . . . ,  n on the extreme rays as follows: 

i 
q = x ~ 1 8 9 1 7 6  i = l , . . . , n .  

That is, qi's are the points of intersection with H when it is translated to the 
midpoint of the line segment (x ~ x*). Next, let the integer rh = [m/2J + 1 where 
m is the number of constraints used to define P. Then the points v~, j = 
1 , . . . ,  rh - 1 and for i = 1 , . . . ,  n are selected as follows: 
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J 1 _ql> 

i=xO J vj + - ~ - ( q i -  x~  i = 2 , . . . , n .  

Now, if we construct the planes: 

I - I j={x leTD]- I (x - -x~  j = l  . . . .  , ( r h -  1) .  (8) 

where Dj is an n x n matrix with (v~-  x ~ as its i-th column, that is 

0 2 n Dj=[u) - - x  , v j  - - x ~  . . , u j  - - x  0] 

then these planes slice P at x ~ It is easy to see that each plane ~ deletes one 
vertex from P and creates at least ( n -  1) new vertices. This implies that after 
(rh - 1) slicing operations, the point x* will be accessible from 2 ~ via at least rh 
number  of edge-searches. Where 2 ~ is the solution to the associated linear 
program with (rh - 1) number of slices added to P, i.e., 

20 Argmin{eVD-ax]x~p,  v -1 = e D i ( x - x ~  . . . . .  r h - 1 } .  

Note that the columns of Dj may be written as: 

_ J 1  o _1o>=o(1 xO> 

�9 o j  (10) ( o ~ - x  ~  ( y i - x ~  i =  2, . . . , n .  

and for j = 1 , . . . ,  (rh - 1). 

X 1 Therefore,  given x ~ and rh, the slicing hyperplanes are systematically 
generated and added to P. To derive the equations of the slicing planes, let 
constants y~, for j = 1 . . . .  , (rh - 1) be defined as: 

T jl = 0(1 - j /2rh)  , (11) 

i (12) yj=Oj/2rh,  i = 2 , . . . , n .  

T h e n ,  eTDj 1= 67D-1 where 

6 j - r = ( I / y ) , l / y ~ , . . . , l / y ' ] . ) ,  j = l , . . . , ( r h - 1 ) .  

Thus, the slicing planes/-/j 's may be written as: 

g = {x [ 8 7 D  - l ( x  --  X 0)  = 1}, j = 1 , . . . ,  (rh - 1) .  (13) 
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Once D-1  is computed, the slicing planes H / s  are easily generated according to 
the equation (13) above. Clearly, by construction, the point x* remains globally 
optimal for the generated test problem. 

3. Case H -  Concave Minimization Problem 

Let  polytope P and vertex x ~ be given as before and define V(P)  to be the set of 
vertices of P. Furthermore,  let C be a cone with its main vertex at x ~ and its rays 
emanating from x ~ to its adjacent vertices. We then truncate the cone produced in 
this way by a hyperplane which does not cut P, possibly by making use of one of 
the nonbinding constraints of P at x ~ Otherwise, we can pick d E R" such that x ~ 
is a unique solution to the linear program 

Minimize { d Vx [ x E P} . (14) 

We then solve 

Maximize { d Vx l x E P} (15) 

to find the vertex 2 E P ,  and next truncate the cone by constructing the 
hyperplane /-) 

= {x I = dYE} 

to generate vertices S 1,  S 2 . . . .  , s". To determine d, and subsequently 
s 1, s 2 . . . . .  s" first we construct a polar cone C* of C, with its generators taken as 
the normalized gradients of the binding constraints at x ~ Then we select d such 
that - d  E int C*. This guarantees that x ~ will uniquely solve the linear program 
(14). Of course, other methods that can use the results o f  the optimal simplex 
tableau corresponding to x ~ may be used as well. Also, the hyperplane H given by 
(3) of Case I can be used. Let  S denote a simplex with its main vertex at x ~ and 
with the vertices s t . . . .  , s" containing P, S _D P. In addition, let h(x) be a known 
concave function on R" or on a subset of R n containing P. Clearly, a variety of 
complicated concave functions may be selected for h(x). Then,  similar to the last 
case, set 

f (x)  = h(x) + + fo  

where the control term, cVx, the constant term fo ,  and vector c are to be 
determined by imposing the condition that f(x) must vanish at x ~ and at all the 
other  vertices of the simplex S, namely s j, j = 1 , . . . ,  n. That  is, 

f ( o )  = 0 

f(sJ) = 0 ,  y = a , . . . , n .  
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By subtracting the first equation from each of the last n equations and then by 
substituting and expanding the terms we obtain 

f ( s J ) - f ( x ~  ]=  l , .  . . , n  

cV (s j - x ~ = h(x ~ ] = l ,  . . . , n . 

Consequently, this reduces to the system Bc = fi with a unique solution for 
control vector c. The value of f0, as in Case I, can be obtained as 

f o  = _ h ( x  o) _ c T x  o " 

of construction, all the vertices of V(P)\{x  ~ are strictly interior to the 
{x E R" I f(x) = O, x E P}. This simply implies that for each vertex x ] E 

O, we have f (x  i) > O. This in turn implies that 

By way 
surface 
V(P) ,  ] 

def 0 
0 =f (x  )<~f(x ' ) ,  V x J ~ V ( P ) ,  

which leads to the conclusion that 

x ~ = a r g m i n { f ( x ) [ x  E V ( P ) ) .  

] = l , . . . , n  

Then, by the virtue of the convexity of P and concavity of f, it follows that 

x ~ = Argmin{ f (x )  lx E P } .  

That is, x ~ a prespecified nondegenerate vertex of P, is a global minimum for the 
constructed concave function f(x) on P. 

The simple theorem below, the proof of which has already been given above, 
summarizes the main results of this section. 

THEOREM 1. Let a polytope P, a nondegenerate vertex x ~ o f  P, a point  x*, and 

an arbitrary concave function h(x) be given with the desired properties as described 
in this section. Furthermore, assume that the control terms, cTx + gO and cTx + fo ,  

are computed according to the procedures o f  Case I and Case H, respectively. 
Then, x* will globally minimize the reverse convex program with the reverse 
constraint given by g(x) = h(x) + cVx + gO ~ 0 on P. Similarly, x ~ will globally 
minimize the concave function f(x) = h(x) + cVx + fo  on P. 

4. Numerical Examples 

In this section we present two examples for each of our two cases. Examples 1 
and 2 for the concave programming followed by Examples 3 and 4 for the reverse 
convex programming. Also note that log(x) denotes the natural logarithm of x 
throughout this section. 
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4.1. EXAMPLE 1 

This p rob lem is taken  f rom F a l k - H o f f m a n  [2]. The  original p rob lem presented  in 

[2] is a Concave  P rog ra m  with the objective funct ion given by 

= _ 2 (x  3 _ 1 ) 2  ( 1 6 )  f ( x )  - ( x  I 1 ) 2 - x 2  - 

and P, the associated po ly tope  is defined as the intersection of  the following linear 
constraints  in R 3. 

X 1 q- X 2 -- x 3 ~< 1 

x 1 - x 2 + x 3 I> 1 

12x 1 + 5x 2 + 12X 3 ~ 34.8 

12X 1 + 12X 2 + 7X3~29 .1  

6X 1 - -  X 2 -  X 3 t> 4.1 

X l ~ 0 ,  x 2 ~ O ,  X 3 ~ 0 .  

Let  V ( P )  = {v ~ v 1, . . . ,  09} deno te  the set of  vertices of  P. Where ,  

v ~ = (0.72857142857, 0, 0.27142857143) T 

v I = (0.986713236, 0.9034964, 0.9167832) T 

v 2 = (1.0703702, 0, 2.3222222) T 

v 3 = (4.41998, 0, -3 .420004)  T 

v 4 = (1.9, 0, 0.9) T 

v 5 = (1, 0.9, 0.9) r 

V 6 : (1, 0, 0) T 

v 7 = (1.033332, 0.4, 1.7) v 

v s = (1.76, 0, 1.14) T 

v 9 = (1, 0, 1.9) T . 

The  global min imum is at tained at the vertex v 6 =  (1, 0, 0) T of  P with the 

object ive  value o f f ( v  6) = --1. We select v 6 as our  initial nondegene ra t e  vertex and 
will implement  the me thod  of  Case II  to  obtain an objective funct ion,  more  

compl ica ted  in fo rm than (16), that  attains its global min imum on P at v 6. 
Start ing at v 6, first we construct  a cone C with its main vertex at v 6, by 

extending t he  rays emanat ing  f rom v 6 to v ~ v 4, and v 5, its three  ne ighbor ing  
vertices. Clearly,  P C C. Let D ~-- [V~ - U6, V4 - U6, V5 - V6] and d T = eT D -1. 

Then ,  the hyperp lane  H given by 

B =  { x e R  n laT(x - v  6) = 1} 
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passes th rough  the vertices v ~ 1}4, 05. As  a result, v 9 = ( 1 , 0 , 1 . 9 )  T =  

Argrnax{drx Ix E P}. This means  that  we can t runcate  C by/ - ) ,  the translat ion of  
H to the  point  09, to construct  the simplex S and consequent ly  find s 1, s 2, s 3, the 

vert ices of  S. As  a result  of  this process we obtain 

IYt = {x E Rn I dT (x -- V 9) = 0} 

for  d T = ( _  1.286549708, -- 1.286549708, 2.397660819) 

and vert ices of  the simplex S, with its main  vertex at 06, are found  to be 

1 s = ( -0 .236507936426,  0, 1.23650793643) 7 

s 2 = (5.1000000009, 0, 4.1000000009)-r 

s 3 = (1, 4.1000000009, 4.1000000009) T . 

The  next  s tep is to select h(x). We can easily take any complex  concave  fo rm for  

h(x). H o w e v e r ,  to  serve the aims of  this illustration, it suffices to choose  a 

nontr ivial  fo rm which is also quite different  f rom (16). Thus  we select 

1 1 
h(x) = 6(1 - e -~xl) - x 2 + 18(1 - e-~X3). (17) 

Given  h(x) and 06, s l, s a, s 3, matrix B and vec to r /3  for  the system Bc =/3 are 

ob ta ined  as 

- -  1.23650793643 0 1.23650793643] 
B =  4.10000000090 0 4.10000000090[ 

0 4.10000000090 4.100000000901 

/3 T = (_  1.67242857509, -- 14.7123575866, 5.26833638323) . 

U p o n  solving the sys tem,  we obta in  

T 
c = ( -1 .11791908759,  3.75542090399, -2 .47046081080)  

The  value of  the constant  term,  f0 ,  is found  to be 

f o  = _ h ( t 3 6 )  _ cT/36 = - 6 ( 1  - e - ~  - c I = -1 .24289695413 

and,  as a result ,  the const ructed  objective funct ion may  be writ ten as 

1 2 1 
f(x) = 6(1 - e -~x') - x 2 + 18(1 - e -zx3) 

- 1.11791908759x I + 3.75542090399x 2 - 2.47046081080x3 

- 1.24289695413 

which attains its global min imum on P at the same vertex v 6 with f (v  6) = 0. 
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4 .2 .  E X A M P L E  2 

As an alternative and slightly more  complex form of h(x) than our first choice, we 
consider the following function: 

- 3/4 4 + 3(1 - e -0"36x3)  h(x) = log(1 + x l )  - e x~ - x  2 q_x2 - - X 2  

where h(x) is concave on P. Taking/36 a s  vertex x ~ in the procedure of Case I I  and 

implementing the process, we find, H,  the plane truncating the cone, as in 
Example  1, matrix B, and the vector /3  as below: 

f-I = uTx for u T = (-1.286549708, -1.286549708, 2.397660819) 

-1.23650793643 0 1.23650793643- 
B = 4.10000000090 0 4.10000000090 

0 4.10000000090 4.10000000090 

/3 v = (_0.159927889068, 21.2187259116, 277.380454328). 

Thus,  the control term, c, is found to be: 

c T = (2.65231867294, 65.1307890046, 2.52298032875). 

The  value of the constant term f 0 =  _h(/36)_ c-rv6 is -1.97758641233. Note  that 

matrix B and plane H ~ are the same as those of example 1. Therefore ,  the second 
alternative form for the F a l k - H o f f m a n  objective function may be given as 

2 - -  3/4 4 f(x) = log(1 + Xl) - e -x~ - x 1 -t- x 2 - x 2 + 3(1 - e -~ 

+ 2.65231867294x~ + 65.1307890046x a + 2.52298032875x 3 

- 1.97758641233 

where,  once again, the global minimum of f (x )  on P is attained at/36. Clearly, by 
construction, the optimal value of f(x), which is always attained at the selected 

vertex,  is zero for every test problem generated by this method.  

4 .3 .  E X A M P L E  3 

Consider  the F a l k - H o f f m a n  polytope given in Example  1. Let  x ~ and its 
neighboring vertices x 1, x 2, and x 3, as defined in the procedure of Case I,  be given 

as follows: 

X 0 = lJ 6 ~- ( 1 ,  0 , 0 )  7- 

x 1 = v 5 = (1, 0.9, 0.9) r 

x 2 = v 4 = (1.9, 0, 0.9) v 

X 3 ~- /30 51 19~ T 
= ( ~ 0  " ' 0 '  7 0 /  " 
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Also, let us choose m = 3, a = (_1,10, 70~T (Recall that we must have a 1 < 1, 3 19 -t " 

and a i > 1, i = 2 , . . . ,  n), and an arbitrary concave function h(x) 

1 1 
h(x) = 6(1 - e -5xl) - x 2 + 18(1 - e-XX3). (18) 

Thus, we find yX = (1, 0.3, 0.3) T, y2 = (10, 0, 9) v, and y3 = (0, 0, 1) T. Likewise, 

the matrices B, B - l ,  D, and D-1 are found accordingly. 

0 0.9 ] 0.9 
B 0.9 0 = 0.9 

- 1 9 / 7 0  0 19/70 

[ i  5/9 - 1 9 / 3 5 ]  
B - 1 =  0/9 - 5 / 9  - 1 9 / 3 5 [  

5/9 19/35_1 

o=I 9 
LO.9 9 

The  vector /3  and c which solves Bc =/3 and gO are found as: 

T g = (-3.63185173825815, -1.97015702341677, -0.4399232485259963) 

c "c = (-0.2841467481807287, -2.130474209115588, -1.904916611171242) 

g~ = _ 2.076669293543471. 

Consequently,  the vectors ~j, j = 1 , . . . ,  (m - 1), the plane H (to be minimized) 
and the two slicing planes, H a and H 2 are found to be: 

~1 = (18/5, 18, 18) T , ~2 = (9/2, 9, 9) T 

H = {x I -4x l  + 5xe + 5x3 = 5} (19) 

H 1 = {x I - 8 x ,  - 6x 2 + 10x 3 = - 7 }  (20) 

H2 = {xl -4xl  +0x2 + 5x3 = - 3 } .  (21) 

Note that for simplicity of presentation the coefficients in H and Hj's above may 
be scaled (here they were scaled by factor of 9). Therefore,  the generated reverse 
convex test problem may now be given as: 

Minimize - 4 x  1 -'1- 5 X  2 -1- 5 X  3 



32 K. M O S H I R V A Z I R I  

w h e r e ,  

Sub j ec t  to:  

X 1 -[- X 2 -- X 3 ~< 1 

X 1 -- X 2 + X 3/> 1 

12X~ + 5X 2 + 12X 3 ~< 34.8 

12X~ + 12X 2 + 7X 3 ~< 29.1 

6X~-- X 2 -  X 3/> 4.1 

- - 8 X  1 - -  6X 2 + IOx 3 >I --7 

- 4 x l  + 5x 3 / > - 3  

X l ~ - O ? x  2 ~ O , x  3 ~ 0  . 

g(x) o 

1 1 
g(x) = 6(1 - e - ~ 1 )  - x ~  + 18(1 - e - y 3 )  - 0.2841467481807287x~ 

- 2.130474209115588x 2 - 1.904916611171242x 3 

- 2.076669293543471. 

(22) 

T h e  g loba l  m i n i m u m  is a t t a ined  at the  po in t  x * =  (1, 0.3, 0.3) T on  the  edge  

b e t w e e n  x ~ and  x 1, as expec t ed  and with  the  ob jec t ive  va lue  of  z * = - 1 .  

F u r t h e r m o r e ,  

2 o = (1 .8920454545,0 ,0 .9136363636)  

is an o p t i m a l  so lu t ion  of  the  assoc ia ted  l inear  p r o g r a m .  Clear ly ,  26 is no t  on  any 

edge  of  P tha t  l eads  to  x*. In  fact ,  severa l  p ivo t  ope ra t i ons  are  n e e d e d  to  r each  x 1 

s ta r t ing  f rom 20 . T h e  fo l lowing a l t e rna t ive  so lu t ion  to the  l inear  p r o g r a m  was 

r e p o r t e d  by  the  r e fe ree .  

A 0  = (0 .8888888889 ,0 ,0 .1111111111) .  X l  

4 .4 .  E X A M P L E  4 

This  e x a m p l e  is a c o u n t e r p a r t  of  E x a m p l e  2 for  the  concave  tes t  gene ra t i ng  

p r o b l e m .  Tha t  is, the  a rb i t r a ry  concave  funct ion  h(x) is chosen  to  be  a s l ightly 

m o r e  c o m p l e x  than  tha t  in the  E x a m p l e  3. 

2 , 3/4 4 ~h(x) = log(1 + Xl) - e -xl  - x I • x 2 - x 2 + 3(1 - e - ~  . 

A s s u m e  all o t h e r  p a r a m e t e r s  of  the  p rev ious  e x a m p l e  r e m a i n  u n c h a n g e d  excep t  

for  t he  choice  of  func t ion  h(x). An i m p l e m e n t a t i o n  of  the  p r o c e d u r e  of  Case  I ,  
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omitting the intermediate computations, results in the following choices for c 
and gO. 

c v = (5.515568838522362, -7.281789746626642, 4.933865556123956) 

gO = _ 4.840836577910864. 

Of  course, the determination of the slicing planes, the predetermined global 
solution, x*, and the objective function remain unaffected. Thus, the new 
generated test problem is the same as that of Example 3, except g(x) in the 
constraint (22) is replaced by 

- -  3 / 4  4 g(x) = log(1 + x1) - -  e -xl - x~ ,- x 2 - x 2 + 3(1 - e - 0 ' 3 6 x 3 )  

+ 5.515568838522362x~ - 7.281789746626642x 2 

+ 4.933865556123956x 3 - 4.840836577910864 

where,  once again the global minimum is attained at the point x*, as expected. 

5. Concluding Remarks 

In this paper we considered a method for generating test problems for linear 
reverse convex programs and concave programming. The nonconvex functions 
involved in both cases are not restricted to possess specific structure. For  instance, 
they are not necessarily quadratic as is the case in [3, 4, 6, 7]. In addition, a slicing 
procedure  was presented in order to generate test problems that are not trivially 
solved by algorithms t h a t  are based on searching the edges of the associated 
polytope. Also, the constraint matrix defining P may be made sparse or dense by 
selecting small or large value for rh, the number of slicing planes, respectively. 
And  finally, it is quite an easy task to implement the method. Using the proposed 
method and taking P as a unit hypercube, or randomly generated polytope, we 
constructed test problems of 3 to over 50 variables. These test problems were not 
solvable by general nonlinear programming codes such as GRG2 and MINOS. Of 
course, this was expected due to nonconvexity of the feasible regions and the 
functions involved. Furthermore,  the generated test problems proved to be hard 
for a few specialized global optimization codes, (e.g. algorithms based on Edge- 
Searching and Cutting Plane approaches) that was available to us. 
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